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Abstract
Based on current compartment model for covid-19, I developed this new model, combined with the
stochastic process, using (1) mathematics analytic methods (2) numerical differential solvers and curve
fitting (3) computer simulations to better understand the public covid-19 data, caliber parameters for each
county and region, therefore to explore the reason and forecast the trends for the coronavirus. For more
details, please visit this project’s website: http://covid.jackwu.us/

Introduction

Since the outbreak of covid-19 last December(Wu 2020[1]), there have been over 6 million confirmed
cases and 388 thousands of deaths(CSSE,2020[2]). Costs over $5 trillion and affects the life of every
human being on earth in such a short time, just 5 months[3]. Scientists around the world have contributed
23,000 research papers on it (Google Scholar Search). Among them, mathematical modeling is used to
predict the spread of the virus for policymakers to better allocate resources and plan interventions. SDS,
2020[4] summaries these approaches to SAR, Ebola, MERS and SARS-CoV-2 (i.e. Covid-19).

There are two kinds of approaches for the modelling: statistics modelling and compartment modelling.
Statistical models are usually based on the historical data from earlier outbreak, to construct the statistical
model, then to predict the spread of virus in the US and other countries. The Institute for Health Metrics
and Evaluation (IHME) outlined the spread epidemic curve in China and Italy, and applied it to all the
states of America and most other countries [5][6].

The other popular model is the compartmental model, which is based on conservation law. The rate of
change equals the difference between the influx to and outflux from a compartment, which leads to the
establishment of the differential equations.  By solving and simulating the equations, we can understand
how public interventions affect the epidemic, predict how the virus spreads, and know what the minimum
vaccines needed in a given population[7].

Literature review

Governmens, research organizations, universities around the world have spent a huge amount of
resources to develop models to understand and predict the spread of COVID-19 since pandemic outburst
late 2019.  Scientists from different fields, from infectious diseases and medicine biology to mathematics
and computer science, have developed and researched various models. This has led to what is likely the
fastest rate of scientific research in history. There are also quite a lot of review articles about models such
as reviewing all the methods in compartment models. However, I haven’t seen a thorough overview about
all the methods across different disciplines including infectious disease medicine, pharmacokinetics,
mathematics, computer simulation, artificial intelligence and machine learning. Therefore here I present
and discuss the basics of these approaches about their concepts, principles, implementations,
applications and limitations as the starting point of my research.
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1) Statistical Model
a) Regression model

i) Linear regression model
The trend line is a typical linear regression model. It minimizes the sum of the
squared deviations from the data to get the trend of the spread of COVID. My
home state Delaware government website[10] provides daily trend lines for
Current Hospitalizations, New Hospital Admissions (Confirmed and Suspected
with COVID-19), Percent of persons testing positive, New Positive Cases, Tests
Performed ……, this is the easiest and most widely seen statistical method used
in numerical Covid-19 websites.

ii) Cyclic regression model
This more advanced model describes the seasonal behavior of diseases, and
their tendencies to be more prominent during specific times during a cycle.
Serfling 1963[9] first developed statistical analysis of excess pneumonia-influenza
deaths based on the seasonal pattern. He combined a linear term describing
secular trend with sine and cosine terms describing seasonal cyclic change to

form an equation of the type for , the expected mean value to the total deaths in𝑌
4 weeks:

[1]𝑌 = 𝑢 + 𝑏𝑡 + ∑ 𝑎
𝑖
𝑐𝑜𝑠θ + ∑ 𝑏

𝑖
𝑠𝑖𝑛θ
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in which is a linear function of time t. Serfling[9] used a least square estimation ofθ
the parameters in equation (1) and derived this cyclic regression model for the
pneumonia and influenza deaths:

[2]𝑌 = 300. 5 + 2. 1𝑡 + 97. 6 𝑐𝑜𝑠(2π𝑡/13 − 2. 67)

Nowadays CDC uses more square terms to account long-term changes due(𝑡2)
to nonlinear factors such as population growth

iii) Double integration method for determining the period of a long term cyclic
trend:

[3]𝑌 = 𝑌 + 𝐴𝑠𝑖𝑛( 2π𝑡
𝑇 )

where is the observed value, the mean value, A the amplitude, T the period, t𝑌 𝑌

the time. Let’s integrate twice,𝑌 − 𝑌

[4]
0

𝑇

∫
0

𝑇

∫(𝑌 − 𝑌)𝑑𝑡𝑑𝑡 =  − 𝐴𝑇2

4π2 𝑠𝑖𝑛( 2π𝑡
𝑇 )

Therefore we can find out the pandemic period by subtracting the observed value
with their mean value

Regression models, both linear and nonlinear, are very popular among epidemiologists
for the prediction and surveillance of outbreaks of new emerging epidemics.

b) Time series analysis on AutoRegressive Integrated Moving Average Model (ARIMA)
and seasonal ARIMA [11] [12]

Assume y(t) denotes a stationary stochastic process at time t with mean value μ,
the backward shift operator z-1 is the defined as z-ky(t) = y(t - k),
the differencing operator of order d: Δd is defined as Δd ≡ (1 - z-1)d,

the autoregressive operator 𝐴(𝑧−1) = 1 + 𝑎
1
𝑧−1 +...... + 𝑎

𝑚
𝑧−𝑚

the moving-average operator 𝐵(𝑧−1) = 1 + 𝑏
1
𝑧−1 +...... + 𝑏

𝑛
𝑧−𝑛

the residual (noise) at time t is e(t) which cannot be predicted from previous
measurements. Then the ARIMA model is modelled by the equation:

𝐴(𝑧−1)[Δ
𝑑
𝑦(𝑡) − µ] = 𝐵(𝑧−1)𝑒(𝑡)

[5]
Special cases:

1) For d=0 and m=0, it’s the moving average model
2) For d=1 and m=n=0, it’s the random walk with drift

3) For where k is the length of seasonal cycleΔ
𝑆
𝑑≡(1 − 𝑧−1) 𝑑(1 − 𝑧−𝑘) 𝑆

and S is the degree of seasonal differencing: then it becomes the
seasonal ARIMA model

Some parts of the time series are used as a training set, and the remaining data is used
as a validation set. The goodness-of-fit model is used for forecasting disease evolution.

c) Statistical process control methods
i) Cumulative sum charts (CUSUM)

CUSUM[13] is a sequential analysis technique most commonly used technique for
the detection of disease outbreaks. Assume at time t i (i=1,2,...,n), the number of
infected cases is y(ti), then CUSUM is:
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or in a recursive form as𝐶𝑈𝑆𝑈𝑀(𝑖) =
𝑗=1

𝑖

∑ (𝑦(𝑡
𝑖
) − 𝑘)

[6]𝐶𝑈𝑆𝑈𝑀(0) = 0
𝐶𝑈𝑆𝑈𝑀(𝑖) = 𝑚𝑎𝑥(0, 𝐶𝑈𝑆𝑈𝑀(𝑖 − 1) + 𝑦(𝑡

𝑖
) − 𝑘),  𝑖 ≥ 0

where k is a reference value to the difference between to the in-control and the
out-of-control mean. The threshold h is 3 times the standard deviation from mean
value of in-control observations
If , then the process is “in-control”.𝐶𝑈𝑆𝑈𝑀(𝑖) < ℎ
When t=ti , then the process is “out-of-control”.𝐶𝑈𝑆𝑈𝑀(𝑖) > ℎ
We can calculate k

[7]𝑘 =− 𝑙𝑜𝑔
𝑓(θ

1
|𝑦(𝑡

𝑖
))

𝑓(θ
0
|𝑦(𝑡

𝑖
))

Here f(θ0) and f(θ1) are the probability functions of the in-control and
out-of-control processes with parameters θ0 and θ1 respectively. They can be
estimated using data from the past. For Poisson distributions, formula [7] is
simplified as:

[8]𝑘 =
µ

1
−µ

0

𝑙𝑜𝑔(µ
1
)−𝑙𝑜𝑔(µ

0
)

ii) Exponentially weighted moving average (EWMA) [14] using the following recursive
statistical estimator,
𝑧(𝑡

0
) ≡ 𝑧(0) = 0

[9]𝑧(𝑡
𝑖
) = (1 − γ)𝑧(𝑡

𝑖−1
) + γ𝑦(𝑡

𝑖
)  𝑓𝑜𝑟 𝑖 ≥ 1

where the constant smoothing coefficient is the degree of weighting decreaseγ
between 0 and 1. It is  a “forgetting” factor for weighing the significance of past
values. y(ti) is the value at time ti,z(ti) is the value of the EMA at time t i. THe
recursive solution is

𝑧(𝑡
𝑖
) = γ[𝑦(𝑡

𝑖
) + (1 − γ)𝑦(𝑡

𝑖−1
) +... + (1 − γ)𝑘𝑦(𝑡

𝑖−𝑘
)] + (1 − γ)𝑘+1𝑧(𝑡

𝑖−𝑘−1
)

[10]
d) Hidden Markov Models (HMM) - statistical correlation in time series

HMM is a statistical Markov model for the Markov process system[15]. HMM are known for
their applications to many areas including infectious disease. When epidemic outbreaks
like COVID-19, we can observe some possible indicators of the disease, but we cannot
monitor and record explicitly the characteristics of the disease. HMM are then exploited
under these limitations. We can use them to forecast the evolution of COVID-19 by
monitoring the number of reported cases.

e) Spatial models - monitor, identify and forecast disease outbreaks in different locations
f) Copula methods

2) Mathematical Model
a) Compartment model

Compartment model[16] has a long history, as originated by Kermack and McKendrick in
1927.[17] It has been used widely in epidemics research and other areas, like
pharmacokinetics and pharmacodynamics to study the movement of drugs through the
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body and the body’s biological response to drugs. It’s a prime example of the application
of conservation laws from physics and differential equations from mathematics to medical
research.

i) Variations on model
(1) SIS model 𝑆 ↔ 𝐼

This is the 2 compartments model, Susceptible and Infectious.
𝑑𝑆
𝑑𝑡 =− β𝑆𝐼

𝑁 + γ𝐼
𝑑𝐼
𝑑𝑡 = β𝑆𝐼

𝑁 − γ𝐼
where S(t) is the susceptible population, I(t) is the infected population, isβ
the COVID-19 transmission rate, and is the recovery rate. N is the totalγ
population, and is a constant:

,𝑆(𝑡) + 𝐼(𝑡) = 𝑁
𝑑𝑆(𝑡)

𝑑𝑡 + 𝑑𝐼(𝑡)
𝑑𝑡 = 𝑑𝑁

𝑑𝑡 = 0
Assume initial condition I(0)=I0, The solution to the system of equations is
a logistic function:

𝐼(𝑡) = (β−γ)𝑁

β+[(β−γ)(𝑁/𝐼
0
)−β]𝑒(γ−β)𝑡

Introducing the basic reproduction number R0 , if= β
γ

𝑅
0

≤ 1 ⇒
𝑡 ∞
lim
→

𝐼(𝑡) = 0

𝑅
0

> 1 ⇒
𝑡 ∞
lim
→

𝐼(𝑡) = (1 − 𝑅−1)𝑁 = 𝐼
∞

I(t) can be rewritten as

𝐼(𝑡) =
𝐼

∞

1+(𝐼
∞

/𝐼
0
−1)𝑒(γ−β)𝑡

In the special case assuming , the SIS model degenerates to a SIγ = 0
model with a simple exponential logistic growth function.

(2) SIR model 𝑆 → 𝐼 → 𝑅
For covid-19, the most widely used compartmental model is the
3-compartment model, also known as the SIR model. S stands for the
stock of the Susceptible population, I is the stock of Infected, and R is the
stock of the Removed population (including both recovery and death).
The conservation law requires that:
𝑑𝑆
𝑑𝑡 =− β𝑆𝐼

𝑁
𝑑𝐼
𝑑𝑡 = β𝑆𝐼

𝑁 − γ𝐼
𝑑𝑅
𝑑𝑡 = γ𝐼

←

(3) SIRS model 𝑆 → 𝐼 → 𝑅
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A recovered individual may become susceptible again after a period of
time 1/α. Adding this possibility to the SIR model changes it into the
SIRS model:
𝑑𝑆
𝑑𝑡 =− β𝑆𝐼

𝑁 + α𝑅
𝑑𝐼
𝑑𝑡 = β𝑆𝐼

𝑁 − γ𝐼
𝑑𝑅
𝑑𝑡 = γ𝐼 − α𝑅

When the disease becomes an epidemic𝑑𝐼/𝑑𝑡 > 0,  𝑑𝑆/𝑑𝑡 < 0
(4) SIRD model 𝑆 → 𝐼 → 𝑅 𝐷( )

A new compartment, D, stands for the deceased population, and μ the
mortality rate for the disease. Adding this compartment to the SIR model
changes it into the SIRD model:
𝑑𝑆
𝑑𝑡 =− β𝑆𝐼

𝑁
𝑑𝐼
𝑑𝑡 = β𝑆𝐼

𝑁 − γ𝐼 − µ𝐷
𝑑𝑅
𝑑𝑡 = γ𝐼
𝑑𝐷
𝑑𝑡 = µ𝐼

(5) MSIR model 𝑀 → 𝑆 → 𝐼 → 𝑅
A new compartment M represents those with passive immunity, and isΛ
the birth rate. Adding this compartment to the SIR model changes it into
the MSIR model.
𝑑𝑀
𝑑𝑡 = Λ − δ𝑀 − µ𝑀

𝑑𝑆
𝑑𝑡 = δ𝑀 − β𝑆𝐼

𝑁 − µ𝑆
𝑑𝐼
𝑑𝑡 = β𝑆𝐼

𝑁 − γ𝐼 − µ𝐼
𝑑𝑅
𝑑𝑡 = γ𝐼 − µ𝑅

(6) SEIR model 𝑆 → 𝐸 → 𝐼 → 𝑅
The Incubation period is very significant for COVID-19 in particular.
Patients could be infected but not yet infectious. We need to add an
Exposed compartment between Susceptible and Infectious, which
represents those patients. Assuming the incubation period is a-1 and birth
rate and death rate are the same at Nμ, the system of equations below is
derived. Adding the exposed compartment to the SIR model changes it
into the SEIR model.
𝑑𝑆
𝑑𝑡 = µ𝑁 − µ𝑆 − β𝑆𝐼

𝑁
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𝑑𝐸
𝑑𝑡 = β𝑆𝐼

𝑁 − (µ + 𝑎)𝐸
𝑑𝐼
𝑑𝑡 = 𝑎𝐸 − (γ + µ)𝐼
𝑑𝑅
𝑑𝑡 = γ𝐼 − µ𝑅

Now the basic reproduction number R0 becomes R0= , if
𝑎

µ+𝑎
β

µ+γ
𝑅

0
≤ 1 ⇒

𝑡 ∞
lim
→

(𝑆𝐸𝐼𝑇) = 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 𝐹𝑟𝑒𝑒 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚

𝑅
0

> 1 ⇒
𝑡 ∞
lim
→

(𝑆𝐸𝐼𝑇) = 𝐸𝑛𝑑𝑒𝑚𝑖𝑐 𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚

(7) SEIS model
(8) MSEIR model
(9) MSEIRS model
(10) Diffusion model

Infectious disease spreads not only over time, but also diffuses across
space. In order to study this effect, we can add a diffusion term into the
equations:

∂𝑡 𝑆 = 𝐷
𝑠
∇2𝑆 − β𝑆𝐼/𝑁

∂𝑡 𝐼 = 𝐷
𝐼
∇2𝐼 + β𝑆𝐼/𝑁 − γ𝐼

∂𝑡 𝑅 = 𝐷
𝑅

∇2𝑅 + γ𝐼

Where Ds, DI, and DR are diffusion constants.
(11) Vaccination model

Let V be the vaccinated population, P be the newborn vaccinated
population, and the adult vaccinated rateρ
𝑑𝑆/𝑑𝑡 = µ𝑁(1 − 𝑃) − µ𝑆 − ρ𝑆 − β𝑆𝐼/𝑁
𝑑𝐼/𝑑𝑡 = β𝑆𝐼/𝑁 − (µ + γ)𝐼
𝑑𝑉/𝑑𝑡 = µ𝑁𝑃 + ρ𝑆 − µ𝑉
Eradication condition becomes
𝑃 ≥ 1 − (1 + ρ/µ)/𝑅

0

ii) Continuous model vs Discrete model
(1) Continuous model

In the real world, infected subjects are discrete individuals, and therefore
continuum models just describe the coarse grained dynamics of the
epidemics in the population. Therefore, we can use ODE/PDE (ordinary
or partial differential equations), which are powerful mathematical tools
for the evolution of the disease as a function of parameters, such as age,
quarantine, etc.

(2) Discrete model
However, the spread of COVID-19 is very complicated, discrete and
stochastic. We have to use a more realistic model to understand more
details. For discrete time equivalent, rewrite the SIR model as:
𝑆

𝑡+1
= 𝑆

𝑡
− β𝑆

𝑡
𝐼

𝑡
/𝑁

𝑡
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𝐼
𝑡+1

= 𝐼
𝑡

+ β𝑆
𝑡
𝐼

𝑡
/𝑁

𝑡
− γ𝐼

𝑡

𝑅
𝑡+1

= 𝑅
𝑡

+ γ𝐼
𝑡

iii) Deterministic model vs Stochastic model
(1) Deterministic model
(2) Stochastic model

The discrete model above remains deterministic: for given values of the
rates β and γ, dynamics will be fixed. It is fairly straightforward to convert
this discrete model into a stochastic one by adding appropriate
probability distributions to the model. There are at least 3 types of such
distributions which will be useful to consider

(a) Binomial distribution
A deterministic model per susceptible rate , where theβ𝐼

𝑡
/𝑁

𝑡

probability for an individual to move from S to I at time t is

𝑝(𝑆 → 𝐼)
𝑡

= 1 − 𝑒
−β𝐼

𝑡
/𝑁

𝑡

(b) Poisson distribution
Assume the imported rate of new infectious cases is ϵ
𝐼

𝑡+1
= 𝐼

𝑡
+ β𝑆

𝑡
𝐼

𝑡
/𝑁

𝑡
− γ𝐼

𝑡
+ ϵ

(c) Multinomial distribution
iv) Fractional Calculus

Normal integer calculus fails in model fitting to the real world. Rates of movement
from one compartment to another aren’t always proportional to the compartment
population. The more advanced fractional calculus has been widely used in
science and has rewritten physics, chemistry, engineering, pharmacokinetics,
and infectious disease research. Fractional calculus involves replacing the

traditional calculus (where n must be an integer) to where α can be a
𝑑𝑛

𝑑𝑡𝑛 𝐷
𝑡
α

complex number:

𝑅𝑒(α) > 0 ⇒ 𝐷
𝑡
α𝑓(𝑡) =

𝑑α𝑓(𝑡)

𝑑𝑡α

𝑅𝑒(α) < 0 ⇒ 𝐷
𝑡
α𝑓(𝑡) =

1
Γ(−α)

𝑡

∫(𝑡 − τ)−α−1𝑓(τ)𝑑τ

For example, , still
𝑑

1
2

𝑑𝑡
1
2

𝑡 = 2
π

𝑡
1
2

𝑑
𝑑𝑡 𝑡 = 𝑑

1
2

𝑑𝑡
1
2

( 𝑑
1
2

𝑑𝑡
1
2

𝑡) = 𝑑
1
2

𝑑𝑡
1
2

( 2
π

𝑡
1
2 ) =1

Then the SIR model changes to:

𝐷
𝑡
α𝑆(𝑡) =− β𝑆𝐼/𝑁

𝐷
𝑡
α𝐼(𝑡) = β𝑆𝐼/𝑁 − γ𝐼
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𝐷
𝑡
α𝑅(𝑡) = γ𝐼

b) Agent Based Simulations
c) Complex Networked Models

3) Machine Learning Model
a) Data Mining
b) Machine Learning

1. Stochastic Branching Model

Hellewell et al 2020[8] first developed a stochastic branching model, parameterised to the COVID-19
outbreak, and used the model to quantify the potential effectiveness of contact tracing and isolation of
cases at controlling COVID-19.

Fig 1: Stochastic Branching Model

Their key findings are (1) higher R0 with a higher percentage of contacts that had to be traced; (2) The
probability of controlling an outbreak decreased with initial cases count increased, which in turn increases
R0, and causes more transmission before symptom onset. They drew the conclusion that highly effective
contact tracing and case isolation is enough to control COVID-19. There are many strong assumptions,
such as (1) isolation reduces spread completely which is not necessarily true; (2) outbreak will stop within
12 to 16 weeks from the initial case due to no new infections, which also is not true.

My work
In my research, I use a basic SIR model and calibrate it to match the real observed trends of COVID in
various countries and regions. By solving for the parameters of COVID spread, we can use those
parameters to analyze what caused the differing trends of coronavirus in different countries, and forecast
what will occur in the future by extending our model.

Main
1.   My New model
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My project workflow, from data collection to models, methods, findings, to conclusions, and
applications as the following figure:

My compartment model:
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I have published all the analysis to my website: http://jackwu.us , which is the only website that
provides real time compartment modeling for every country/state currently available:
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2. Mathematics
This paper uses the classic SIR model to model COVID-19, with three compartments: Susceptible,
Infected, and Removed. The susceptible compartment includes people who do not have the disease, but
are capable of catching it. The infected compartment includes those who actively have the disease. The
Removed compartment includes both people who have Recovered, and are thus immune due to
immunologies, and are dead, and are Removed since they cannot contribute to the spread of the disease
anymore.

There are two ways for individuals to change compartments; they can move from Susceptible to Infected
through transmission (catch the virus), or move from Infected to Removed through recovery (recover or
die from the virus). We make the same assumptions about virus spread as in previous SIR models: that
transmission is jointly proportional to the populations of the susceptible and infected compartments, and
that recovery is jointly proportional to the population of the infected compartment. This is represented by
the following set of differential equations:

𝐷
𝑡
α𝑆(𝑡) =− β𝑆𝐼/𝑁

𝐷
𝑡
α𝐼(𝑡) = β𝑆𝐼/𝑁 − γ𝐼
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𝐷
𝑡
α𝑅(𝑡) = γ𝐼

One of the most straightforward ways to forecast a pandemic is to use known data to create a best fit
model.  This model has certain parameters that need to be calculated by a best-fit model.

There are many different models that can be used for a best fit. The simplest model is a linear regression,
or a trendline. A linear regression with equation mx + b can be fit to some given data. A linear trendline
can be useful for predicting numbers over a short period of time, but is ineffective for long periods of time
because the overall data trend is not linear.

Our model is an expanded version of a simple linear regression. To better model the entire trajectory of
the pandemic, we add two additional terms to our model equation. Using these two terms, we are able to
model: a purely exponential growth, a logistic growth, a “bell” curve, and a “second wave” curve, as seen
in the below picture.

Here we analyze the SIR model and solve its differential equations analytically.

Using the expressions for dS/dt and dI/dt, we derive

dI/dS = -1 + ⍺/βS

= +
𝐼0

𝐼

∫ 𝑑𝐼 −
𝑆0

𝑆

∫ 𝑑𝑆 (⍺/β)
𝑆0

𝑆

∫ 1/ 𝑆 𝑑𝑠

I - I0 = (S0 - S)  + (⍺/β) * (ln S - ln S0)

3. Data collection, extract, transform, load, orchestration, normalization

The data used in this study came from primarily four sources. The first resource is from the publication
Our World in Data[7],(https://ourworldindata.org/coronavirus-source-data) which had data concerning
confirmed cases, deaths, tests, and specifics about each country; however, it did not have a count for the
number of those who had recovered from COVID, making it impossible to determine the number of
people infected at any one time. To fill in this data for our model, we used a second source, from The
Humanitarian Data Exchange, (https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases) to
get the number of recovered individuals and then calculate infectives. The third source I used in this
project is JHU CSSE data (https://github.com/CSSEGISandData/COVID-19) which are aggregated from
tens of different sources for US states data. The fourth source is
https://ncov.dxy.cn/ncovh5/view/pneumonia, which contains China Covid 19 data.

The reasons for collecting multiple resources include the presence of data for more areas/countries/states
in the world, data for different time intervals, and the inclusion of more fields and attributes, for my
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research needs. However, because the data is coming from four different sources, there were several
issues as following:

1. Different file formats: mostly, they are 5 types of data formats:
a. .csv (comma separated values file)
b. .xls or .xlsx (Microsoft Excel file)
c. Html file from web page
d. Web service/API interface files

i. Xml file
ii. JSON

2. Redundant data with repetition of data
3. Missing data

a. The Humanitarian Data Exchange Data lacked any records from the United States of
America, so the number infected at any time could not be calculated for the US.

4. Discrepancies that harmed the accuracy of the data and caused erroneous results.
a. The recovered count (from the Humanitarian Data Exchange) exceeded the total cases

count (from Our World in Data) for the country of New Zealand, causing a negative
number of active infectives.

In order to solve these issues, I used Microsoft SSIS (SQL Server Integration Services) tool for ETL
(extract, transform, load) and orchestration. I built a SQL relational database to store and process the data.
I established all primary keys for each table, and foreign keys for referential integrity. Here is the
collected data that was loaded into a MS SQL database.

15



Total data size is 208 Mb. All the processed data, have been posted to my web site at:
http://www.jackwu.us/Data

Both table views and graph views are available. For example, There are 280 countrie/regions data in table
view at

http://www.jackwu.us/TableView
which can browse to 14 pages, and each country is selectable to view daily records - here’s a screenshot:
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There are 12 different graph views of raw data, each graphing a different statistic. Here’s a screenshot for
Accumulated Hospitalized count, which compares between an unlimited number of states and countries.
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Following is the flow chart for the processing of data:

4.   Calibration

There are 5 parameters needed to produce an SIR model and graph. They are: (1) the starting value of S,
or susceptibles, (2) the starting value of I, or infectives, (3) the coefficient for the rate of transmission, β,
(4) the coefficient for the rate of recovery, ⍺, and (5) the “time shift”, or the real-world date at which the
SIR simulation should begin. These values were calibrated for many countries, with the goal of finding a
best-fit. The best fit was defined to be the set of parameters that minimizes the sum of the squares of
errors (differences between our mode simulation and real observed data).

Python and various libraries such as scipy, numpy, pandas, and matplotlib were used to simulate an
infection using the SIR model, read information from SQL, find the best-fit parameters, and display data
using a graph. The best fit was calculated using the scipy.optimize.curve_fit function.

The initial guesses were calculated in certain groups. Data from countries were split into one of four
categories:

-Growth, a continuous increase in cases
-Logistic, a growth followed by a relatively flat plateau
-Bell, a growth followed by a drop, similar to a graph created by an SIR model
-Second Wave, a growth followed by a drop, and then another growth

The best fit model for the countries in each type was calculated using a similar procedure. First, we
manually fit the curve for a country that has an ideal graph; smooth and easy to fit using simple
experimentation and manual tinkering. Once a satisfactory initial guess is created for the base country,
that initial guess is copied over to all other countries of the same type, and then scaled based on the peak
active count in each country compared to the peak active count in the base country. All of the initial
guesses for each country is run through the scipy.optimize.curve_fit function to find the local best fit.

5.  Data fitting and numerical results
5.1 Tracking Daily Records

5.1.1 Table view
I have extracted, transformed and loaded COVID-19 data using web services from

different sites. The challenges associated with the process of ETL include: (1) The management
of huge amounts of data, with my database size growing to gigabyte size. I have learned partition
techniques to speed up my database performance. (2) The data are from different sources, with
different structures and different schemas. Certain sources, like John Hopkins University, have
even changed their own data schema (JHU has changed 4 times since I loaded their data). So far,
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I have collected COVID-19 data for all countries and also all states in the United States. A table
view can be seen by visiting my web site at https://covid.jackwu.us/TableView. Below is a
screenshot for Delaware.
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5.1.2 Graph view
Real time tracking all data related to COVID-19 in all countries and states in graph view

(more than 10 webpages similar to https://covid.jackwu.us/ActiveDailyChart ):
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My web site is probably the only web site on the internet which can provide unlimited
comparison between any country and state together on the graph. My web site is also probably
the only website can compare all of the following: (1) test cases daily (2) test accumulated (3)
confirmed cases daily (4) confirmed cases accumulated (5) recovered daily (6) recovered
accumulated (7) death - daily (8) death accumulated (9) active infected daily (10) active infected
accumulated (11) hospitalized daily (12) hospitalized accumulated, across the world, on total
population, or per million, and either in linear or logarithmic y-axis scale, using horizontal lines,
vertical lines, box lines, dots, dashes, columns, bars(horizontal columns), stacked columns and
areas.
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5.2 Insights from Data
5.2.1 Relation between Infected and Symptoms

By aggregating all the cases with symptoms, I found out that Fever and dry cough are the
most common symptoms for COVID-19. https://covid.jackwu.us/Symptoms
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5.2.2 Mortality Rates between Existing Diseases, Age, and Gender
I collected data for Cardiovascular Disease, Diabetes, Chronic Respiratory Disease,
Hypertension and Cancer. https://covid.jackwu.us/MortalityRate I found:

(1) For single existing condition, the mortality rates grow linearly along the age, from 0% to
95%

(2) For multiple existing conditions, the mortality rates jump to 95% at the age of 45 years
old
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5.2.3 All ratios comparison between all countries and states
This unique feature  from my website provides the ratio comparison between any country and
state in table view or graph view: https://covid.jackwu.us/Ratios The following is a deaths
over confirmed cases comparison between Italy and Spain:
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The following compares Recovery population over Death population for France, UK and
Canada:
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5.2.4 Dynamic (change over time) comparison of ratios between any
countries and states https://covid.jackwu.us/Growth

27

https://covid.jackwu.us/Growth


5.3 Forecasting from Model
5.3.1 Statistical model

On this page https://covid.jackwu.us/StatisticsModel I provided three statistical
calculations for all countries and states

1) Moving average with the length in days adjustable
2) Bollinger Bands calculated from an inputted value for number of standard

deviations
3) Trend line for any length of days

The following is for Delaware:
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For South Korea:
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5.3.2 Compartment model
My work involves curve fitting to calculate compartment model parameters. My work is

different from other people’s in that other researchers target one country or one region, and
manually adjust and calculate those SIR model parameters. By contrast, my work is universal,
and by choosing any country or state data, my model will automatically, and immediately do the
curve fitting and calculate the parameters for you. For example, the following curve fittings are
for certain countries: dots represent real data, and the curve represents the best-fit model
calculation. All the parameters are calculated in the tables below the graph:

For Austria:
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For Cuba:

31



For Germany:

32



For Iceland:
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For Israel:
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For Italy:
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For Japan:
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For Romania:
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For Singapre:
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For Slovakia:
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For South Korea:
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For Switzerland:

41



For Columbia:
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For Brazil:
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For India:
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For Mexico:
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Clearly, my model fits the real data very well, and it give the prediction for forecasting. Unlike
most other researches they developed one model for one country, I developed one model to fit all the
countries

6. Results
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There were three main outcomes for curve-fitting each country: either a success, in which the curve_fit
function found a best fit to the data, a bad fit, in which the curve_fit settled on a fit that was obviously not
a best fit (usually a simple linear regression), or a runtime error, caused by the curve_fit function
surpassing the allotted ‘iteration” count for finding the local minimum. In the case of the bad fit and
run-time error, this was usually due to a poor initial guess, as the model became divergent instead of
convergent at that point. In the case of the runtime error, the curve_fit function found no minimum, while
with the bad fit, the result would usually be a simple linear regression over the entire graph, ignoring the
two exponential terms. This made the predicted curve very obviously inaccurate with respect to the data.

Another issue is present with specifically the “Bell” chart type. The SIR Model and most countries have
an overall trajectory that rises, reaches a peak, falls, and then settles to 0. However, a perfect bell is very
hard to recreate with the chosen formula; instead of creating a bell, starting at and settling at 0, the model
had to use the first “hump” in a second wave graph to produce the bell. This resulted in a predicted
exponential upward trajectory for practically every bell graph that came out with a good fit, and many
countries had bad linear regression fits.

Efficient Testing:

Near the beginning of the COVID 19 pandemic, China was tasked with testing the population of Wuhan,
11 million, in merely 10 days. Through standard testing, by testing one person at a time, 11 million tests
would be required. However, COVID tests are capable of testing more than one person at a time. Testee
samples can be combined, and if any one sample is positive, the entire test will output positive. While this
functionality at first seems insignificant, it has great power in that if it outputs negative, it is able to
confirm negative test results for multiple people with a single test. In this appendix, we analyze and
optimize this testing method.

In order to minimize the required tests, we need to maximize the verdicts made (number of people
confirmed positive or negative) per test. For tests with a single blood sample, the verdicts per test is
obviously 1. For tests with multiple blood samples, we can only reach verdicts if the result comes back
negative, confirming everyone in the test as negative; a positive result would be ambiguous.* We can
quantify the number of verdicts per test with a mathematical equation. Let b be the number of blood
samples per test, and f be the frequency of a positive case. The chance we will get a negative test result,
confirming all testees as negative, is the probability that everyone in the test really is negative, or (1-f)b. If
the test result is negative, the number of verdicts made is equal to b. Thus, the estimated number of
verdicts per test is equal to V(b) = (1-f)b * b. We want to maximize the number of verdicts per test, as that
maximizes the amount of information we gain from each test. To find the b value that will maximize the
verdicts per test, we calculate its derivative and set it to 0:

V’(b) = ln(1-f) * b * (1-f)b + (1-f)b = 0
(ln(1-f) * b + 1)(1-f)b = 0
b = -1 / ln(1-f)
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With a hypothetical frequency of 10% positive cases, we derive a value of b = 9.49, which means that V(9)
or V(10) gives us the most optimal verdicts per test setup. V(9) and V(10) for this case are equal, which
means that both b=9 and b=10 will work equally well (however, b = 9 is more consistent and less
sensitive to fluctuations, so in practice, it would be preferred). Assuming b = 10 for simplicity and a
population of 10000 people with a positive frequency of 10%, we can expect out of 100 tests, we can
expect ~34.9 tests to come up negative, confirmining 349 people as negative. This is much better than
using one test per person, which would only be able to confirm 100 people with the used 100 tests.

As a hypothetical, let us assume 35 tests appeared negative, allowing us to confirm 350 people as
negative and leaving 650 people uncertain. Here, we can repeat the previous process on the smaller
population. However, because some confirmed negatives have been removed from the population, the
positive frequency has changed, and thus we must recalculate our b value. Within our hypothetical, and
letting P represent the uncertain population, the new frequency is equal to Fnew = Fold * Pold / Pnew =
15.4%. Our new b value is thus 5.98, which is rounded to 6. V(6) = 2.2, so we can expect to confirm 2.2
people per test.

This process repeats until our f value gets high enough and our maximum b value gets low enough that
the maximum value for b is under 1. This means that direct individual testing is now more efficient than
group testing, and thus all remaining uncertain individuals should be directly tested.

This process is extremely effective when the positive frequency is very low, such as at the beginning of an
outbreak. With a value of f = 0.001 (0.1%), V(1000) reaches a value of 368, meaning that the first round
of tests are over 360 times as efficient. A self-created simulation estimates that the total number of tests
needed to confirm 10000 people is under 200 tests, resulting in the average test being 50 times as
efficient. With a lower rate of f = 0.0001, (0.01%), which equates to about 33,000 people for the US (the
number of confirmed cases around the first half of April), the first round of tests are more than 3600 times
as efficient.

Of course, there are plenty of practical issues in implementing such a theoretical conclusion. Using
thousands of blood samples for a single test would be both a challenge for logistics and test centers, as
well as for the medical community to be able to reliably detect very small amounts of virus. The effect of
false negatives and false positives would be greatly amplified. Additionally, if the true number of positive
cases was significantly higher than expected, there could be many more positive test results than
anticipated and the effectiveness of these tests would be dramatically limited. However, China was still
able to utilize this strategy using about 30 blood samples per test.

* You could reach a verdict from a positive test result by using process of elimination; for example, if 5
blood samples test positive, and 4 of those samples are later confirmed negative, then the last sample
must be positive; however, this minor and situational optimization is excluded for simplicity.
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Conclusion and Discussion

My work on COVID-19 modeling has completed the following:
1) A thorough review for almost all models currently used in COVID-19 studies, from Statical

models to mathematical models, from branching process to compartment models, from spatial
modeling to global surveillance, from continuous differential equations to discrete mathematics,
from stochastic process and the Markov chain to fractional calculus.

2) The first and only website available on the Internet that can provide unlimited comparison
between almost all parameters for an unlimited number of countries and states.

3) The first and only website can do Statistical modeling and SIR modeling for any country and
state. Usually a scientific paper published only for one or two countries or regions on SIR
modeling.

4) From the pattern of the evolution of the COVID-19, I predicted growth. I also found the relations
between the growth of the cases with the counties.

5) I created a ratio comparison between any country and state, which is not seen at anywhere else
6) I found for multiple existing conditions, the mortality rates jump to 95% at the age of 45

years old
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Discussion

The most obvious improvement to this study is to use a more complicated model. Very complex models
with many compartments have been made, such as the SIDARTHE model[6], which has eight
compartments. The next step is to design a model that incorporates testing and diagnosed individuals, as
the data we have observed and based our model off of is not the true number of infectives,but instead the
confirmed cases of those who have been infected.

Future Work

The graph below shows the researcher’s own goals and process towards COVID-19 research.

Additional data sources that could be used include WorldOmeter, BNO, JHU, and DXY. COVID-19
numbers from these websites will be loaded into an MSSQL database. The collected data is used for three
primary methods. The first is numerical analysis, which includes analytical math / statistics, fitting a
country’s data versus time to a curve generated by a compartment mode, and  computer simulation. The
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second method is a Real Time Dashboard that publicly displays the collected data in ways that will make
the data easier to interpret, primarily graphs. The third method is to use the data to fit a statistical model,
and use data from prior outbreaks such as SARS to predict the trajectory of COVID. When combined
together, the results of these research methods will allow scientists to calculate the parameters of regions
regarding their infection, recovery, and death rates; forecast how the disease will grow or diminish in the
future; and help politicians and strategists make crucial decisions regarding the COVID-19 response.

Researchers have used two different approaches for modelling: statistical modelling and compartmental
modelling. Statistical models are constructed using observed data from the past, including both data from
the current epidemic and data from previous epidemics. Using the known trajectories of past diseases,
statistical models are then extended to determine the most likely result for the current outbreak. The
Institute for Health Metrics and Evaluation (IHME) has used this method to outline the epidemic curve in
China, Italy, all US states, and many other countries[4][5].

The other popular model is the compartmental model, which comes from the field of epidemiology itself.
The compartmental model keeps track of a population, placing each individual into one compartment, or
state. Over time, individuals move from one state to another, causing the number of individuals in each
compartment to change. The rate of change equals the difference between the influx and outflux of the
compartment, which leads to the establishment of a set of differential equations.  By solving and/or
simulating these equations, we can predict the spread of the virus, understand how outside forces (such as
public intervention or lockdown) affect the epidemic, and know what measures are necessary to end the
epidemic in a given population[6].
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