
My Tips for USACO
ACM; Jack Wu

General Information

A) USACO is becoming increasingly popular
1. CS is becoming increasingly popular
2. Boosted by programs such as AP CS
3. USACO is an at-home competition, which makes

it easy to join during COVID

B) December contest gets the most students
1. Beginning of a new contest season

For code jam

of Bronze = 2.5 # of Silver = 8 # of Gold = 20 # of Platinum

Promotion Rate: Bronze 30% > Silver 20% > Gold 10% > Platinum listing 5%
 Accumulate: Bronze 30%, Silver 6%, Gold 0.6%, Platinum listing 0.03%

Math AMC 8 AMC 10/12 AIME USAMO MOP IMO

USACO Bronze Silver Gold Platinum Camp IOI

Comparison to Competitive Math

1. Determine a target time complexity

2. Solve the first sample test case on paper

3. Generalize your methods

4. Develop your algorithm

5. Consider edge cases

6. Begin testing as early as possible

7. Write complicated test cases

General Problem Solving Procedure

Computer Science’s Mathematical Basis

You’ve heard that computer science is heavily based on math

In USACO, especially at higher levels, is based on complex math and number
theory

Complex problems require analyzing, generalizing, and simplifying to make them
solvable by computers

USACO problems draw on very similar skills as do AMC and AIME problems

A simple application of the power of Math

How would you program a computer to calculate

as quickly as possible?

216

Mathematics needed:
● Euler’s Totient Function

● Mobius Function

● Fermat’s Little Theorem

● Binomial Transformation

● Mobius Transformation

● Dirichlet Convolution

The Formulas to Remember

First, we have to convert the USACO problem into a math problem

When
● N<10, it’s an elementary school problem
● 10<=N<20, it’s a middle school problem
● 20<=N<=100, it’s a high school problem
● 100<N<=5000, it’s an AMC/AIME problem
● N>5000, it’s a USACO problem

USACO: N=1,000,000 P=104857601 solve in 0.2 seconds

(where p is prime)

Time Complexity
The problem requires N <= 1000000

That means a brute force approach would require on the order of N^2, or
1000000000000, computations

This will result in a TLE (Time Limit Exceeded) Error:

Wolfram fails at n=100:
Product[Product[lcm(i,j)/gcd(i,j) , {i, 1, 100}],{j, 1, 100}] (mod 104857601)

We need a O(N log N) or better solution; one that exploits mathematical patterns
to use much less computation.

“Booo! You need a better algorithm!”

Calculate first

2 methods with different complexity

#include<bits/stdc++.h>
using namespace std;
const int N=200099;
struct Pt{int c1,c2,acc;}P[N<<5];
int totalindex;
void recurs1(int a,int l,int r,int split){
 totalindex++;
 int curr = totalindex;
 if (l==r){
 P[curr].acc=P[a].acc+1;
 return;
 }
 P[curr].c1=P[a].c1; P[curr].c2=P[a].c2;
 int mid=(l+r)/2;
 if (split<=mid){
 P[curr].c1 = totalindex+1;
 recurs1(P[a].c1,l,mid,split);
 }
 else{
 P[curr].c2 = totalindex+1;
 recurs1(P[a].c2,mid+1,r,split);
 }

P[curr].acc=P[P[curr].c1].acc+P[P[curr].c2
].acc;
}
int rcrs2(int index,int intL,int intR,int l,int r){
 if (intL<=l&&r<=intR){
 return P[index].acc;
 }
 int sum=0;
 int mid=(l+r)/2;
 if (intL<=mid)
sum+=rcrs2(P[index].c1,intL,intR,l,mid);
 if (mid<intR)
sum+=rcrs2(P[index].c2,intL,intR,mid+1,r)
;
 return sum;
}
int top[N];

int main(){
 int n,j,q,Top[N],t[N];
 cin>>n>>q;
 for (int i=1;i<=n;i++){
 int a;
 cin>>a;
 while (j>0&&t[j]>a) j--;
 if (t[j]==a){
 top[i] = totalindex+1;
 recurs1(top[i-1],1,n,Top[j--]);
 }
 else top[i]=top[i-1];
 Top[++j]=i;
 t[j]=a;
 }
 for (int qu=0;qu<q;qu++){
 int l, r;
 cin>>l>>r;

cout<<r-l+1-rcrs2(top[r],l,r,1,n)+rcrs2(top[l-1],l,
r,1,n)<<"\n";
 }
 return 0;
}

Demo

